Intro to Options: More Greeks & Volatility

Vincent Vis www.limitlong.com

After this module, you:

LIMIT LONG

- know all first-order Greeks
- understand their dynamics over strike and over time
- understand volatility, both implied and realised
- know a nice straddle price approximation

RECAP: THE VALUE OF AN OPTION DEPENDS ON:

Spot (S) and Strike (X) price of the underlying Time to expiry (T) ^`® ® Implied Volatility (σ) Value $V := f(S, X, T, \sigma, r, D)$ % Interest Rate (r) Dividend (D) 8

INTRO TO OPTIONS

LIMIT LONG

Sensitivity to each input are 'Greeks'

ſ	call	put	call Greek	put Greek
S	Ť	→	$\Delta_c = \frac{\partial V_c}{\partial S} > 0$	$\Delta_p = \frac{\partial V_p}{\partial S} < 0$
X	Ļ	ſ		
t	ſ	ſ		
σ	¢	ſ		
r	ſ	Ļ		
D	Ļ	ſ		

Recap: Gamma (Γ)

VOLATILITY

- Realized volatility is a measure (standard deviation) over a time period (past performance)
- Rule of thumb: if $\sigma = 16$, the asset has an average daily move of 1%
- Implied volatility is the reverse engineered number from an option price (forward looking)

GREEKS: Vega (v)

- Higher $\sigma_{implied}$ means higher option prices
- Vega is the sensitivity of the option's value for a one volpoint change: $v = \frac{\partial v}{\partial \sigma}$
- Vega decreases over time
- Vega is maximum for ATM options

Sensitivity to each input are 'Greeks'

1	call	put	call Greek	put Greek
S	Ť	→	$\Delta_c = \frac{\partial V_c}{\partial S} > 0$	$\Delta_p = \frac{\partial V_p}{\partial S} < 0$
X	→	Ť		
t	ſ	Ŷ		
σ	ſ	¢	$\nu_c = \frac{\partial V_c}{\partial \sigma} > 0$	$\nu_p = \frac{\partial V_p}{\partial \sigma} > 0$
r	ſ	↓		
D	Ļ	Ť		

EXERCISES (I)

What is weighted vega?

- Long or short vega (S = 100)?

 - Short the 95/90 putspread
 Long the 80/90 callspread
 Long the 1M/3M 100 call calendar
 - Short the 1M/3M 100/90 put calendar
- The price of an ATM option is \$ 3.30 and its vega is 10/ We raise implied volatility by 2.5 volpoints. Calculate the new price of the option.

GREEKS: Theta (θ)

change in option value per one time unit (typically 24h):

$$-\theta = \frac{\partial V}{\partial t}$$

- Same direction for calls and puts
- Same characteristics as gamma: "theta is the price of gamma"

Sensitivity to each input are 'Greeks'

↑	call	put	call Greek	put Greek
S	Ť	→	$\Delta_c = \frac{\partial V_c}{\partial S} > 0$	$\Delta_p = \frac{\partial V_p}{\partial S} < 0$
X	↓	Ť		
t	Ť	Ť	$\theta_c = \frac{\partial V_c}{\partial t} > 0$	$\theta_p = \frac{\partial V_p}{\partial t} > 0$
σ	Ť	Ť	$\nu_c = \frac{\partial V_c}{\partial \sigma} > 0$	$v_p = \frac{\partial V_p}{\partial \sigma} > 0$
r	ſ	Ļ		
D	Ļ	ſ		

THETA AND P/L

Formula for total profit & loss:

Total PnL = Gamma PnL + ThetaPnL + other effects

$$=\frac{1}{2}\cdot\Gamma\cdot\mathrm{move}_{\$}^{2}-\theta\cdot(\Delta t)$$

Movement required to make zero profit:

when $\sigma_{implied} = \sigma_{realized}$

So when: $move_{\$} = \mathbb{E}(Daily Move) = \frac{\sigma \cdot S}{16}$

EXERCISES (II)

- Draw theta over towards expiry (θ versus t) for: an ATM call option
 - a far OTM put option
- ^b Do you pay or receive theta (S = 100)?
 - Short the 95/90 putspread
 Long the 80/90 callspread

 - Long the 1M/3M 100 call calendar
 - Short the 1M/3M 100/90 put calendar
- True or False:

"The sign of theta on a 90/80 1x2-ratio putspread is the same throughout its lifetime (assume S = 90, σ_{implied} remains constant).

Rho (ρ) is the interest rate Greek

ſ	call	put	call Greek	put Greek
S	Ť	→	$\Delta_c = \frac{\partial V_c}{\partial S} > 0$	$\Delta_p = \frac{\partial V_p}{\partial S} < 0$
X	→	Ť		
t	Ť	Ť	$\theta_c = \frac{\partial V_c}{\partial t} > 0$	$\theta_p = \frac{\partial V_p}{\partial t} > 0$
σ	Ť	Ť	$\nu_c = \frac{\partial V_c}{\partial \sigma} > 0$	$v_p = \frac{\partial V_p}{\partial \sigma} > 0$
r	ſ	Ļ	$\rho_c = \frac{\partial V_c}{\partial r} > 0$	$\rho_p = \frac{\partial V_p}{\partial r} < 0$
D	Ļ	ſ		

LONG THE 100-STRADDLE (S = 100)

Buy the 100 call and the 100 put, both for \$4

LIMIT LONG

THE ATM-STRADDLE

LIMIT LONG

LONG THE 100-STRADDLE (S = 100)

If S stays at S = 100, how does time decay?

THE ATM-STRADDLE

A USEFUL APPROXIMATION

Value $V := f(S, X, T, \sigma, r, D)$

- For ATM: S = X
- Assume r = 0
- Ignore higher order details
- Price of the ATM-straddle Y_{ATM} :

 $Y_{ATM} \approx 0.8 \cdot S \cdot \sigma \cdot \sqrt{t}$

THE ATM-STRADDLE

EXERCISE (III)

- Estimate the price of the S&P 3-months ATM-straddle. Sanity check the answer.
- ^{**b**} Derive ν and θ from the approximation formula
- You bought an ATM-straddle at $\sigma_{imp} = 16$ and later you sold it when $\sigma_{imp} = 20$. Still you lost money. What happened?
- You bought a weekly ATM-straddle. If there will be one day where the underlying moves a lot, do you prefer it to be the first day or literally expiry day late afternoon? Or are you indifferent?

THANKS SO MUCH FOR YOUR ATTENTION

vincent@limitlong.com

www.limitlong.com

www.linkedin.com/in/vincent-vis-6a8a8217/

